
eGaN® FET DATASHEET **EPC2016C**

EPC2016C – Enhancement Mode Power Transistor

 V_{DSS} , 100 V $R_{\text{DS(on)}}$, $\,16\,\text{m}\Omega$ I_D , 18 A

Gallium nitride is grown on silicon wafers and processed using standard CMOS equipment leveraging the infrastructure that has been developed over the last 55 years. GaN's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
N/	Drain-to-Source Voltage (Continuous)	100	V	
V _{DS}	Drain-to-Source Voltage (up to 10,000 5ms pulses at 150° C)	120	V	
	Continuous ($T_A = 25^{\circ}C$, $\theta_{JA} = 13.4$)	18	۸	
l _D	Pulsed (25°C, Tpulse = 300 μs)	75	А	
\/	Gate-to-Source Voltage	6	V	
V_{GS}	Gate-to-Source Voltage	-4	V	
T,	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

EPC2016C eGaN® FETs are supplied only in passivated die form with solder bars

Applications

- High Speed DC-DC conversion
- · Class-D Audio
- · High Frequency Hard-Switching and **Soft-Switching Circuits**

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra low Q_G
- · Ultra small footprint

Static Characteristics (T _J = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS MIN		TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 300 \mu\text{A}$	100			V
I _{DSS}	Drain Source Leakage	$V_{GS} = 0 \text{ V}, \ V_{DS} = 80 \text{ V}$		25	150	μΑ
I _{GSS}	Gate-Source Forward Leakage	$V_{GS} = 5 \text{ V}$		0.5	3	mA
	Gate-Source Reverse Leakage	$V_{GS} = -4 V$		0.25	0.15	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 11 \text{ A}$		12	16	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V

All measurements were done with substrate shorted to source.

Thermal Characteristics					
		TYP			
$R_{\theta JC}$	Thermal Resistance, Junction to Case	2	°C/W		
$R_{\theta JB}$	Thermal Resistance, Junction to Board	4	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	69	°C/W		

Note 1: R_{0JA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. $See \ http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf \ for \ details.$ eGaN® FET DATASHEET EPC2016C

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			360	420	
C _{oss}	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 50 \text{ V}$		210	310	pF
C _{RSS}	Reverse Transfer Capacitance			3.2	4.8	
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge			3.4	4.5	
Q_{GS}	Gate-to-Source Charge	$V_{DS} = 50 \text{ V, } I_D = 11 \text{ A}$		1.1		
Q_{GD}	Gate-to-Drain Charge			0.55	1	nC
$Q_{G(TH)}$	Gate Charge at Threshold			0.7		
Qoss	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 50 \text{ V}$		16	24	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate shorted to source.

Figure 1: Typical Output Characteristics at 25°C

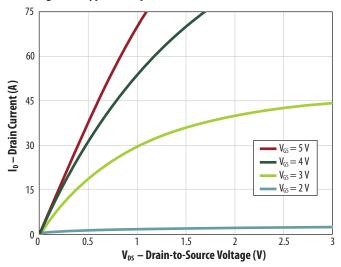


Figure 2: Transfer Characteristics

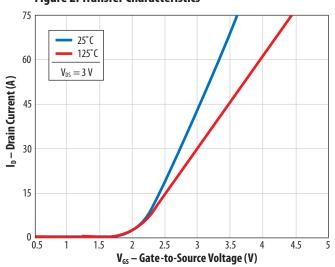


Figure 3: R_{DS(on)} vs. V_{GS} for Various Currents

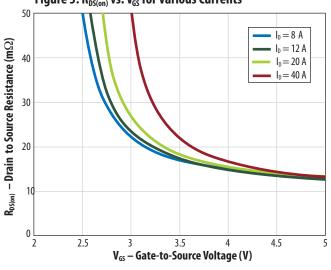
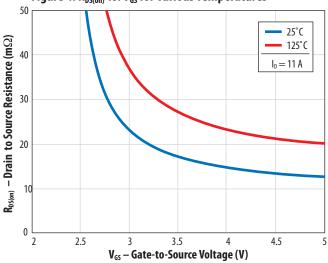
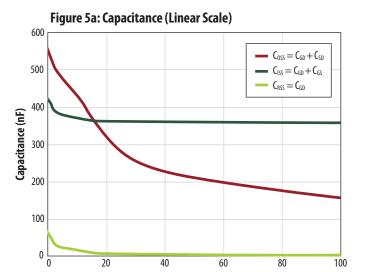




Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

eGaN® FET DATASHEET **EPC2016C**

V_{DS} – Drain-to-Source Voltage (V)

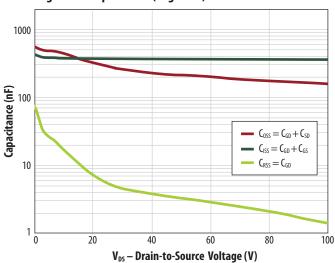


Figure 6: Gate Charge

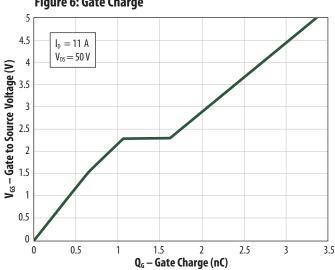


Figure 7: Reverse Drain-Source Characteristics

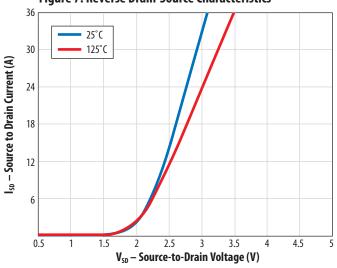


Figure 8: Normalized On Resistance vs. Temperature

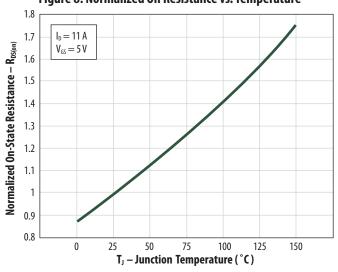
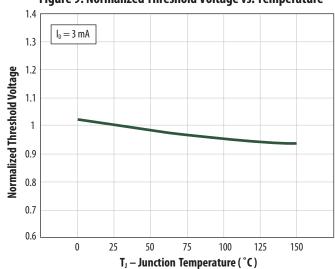
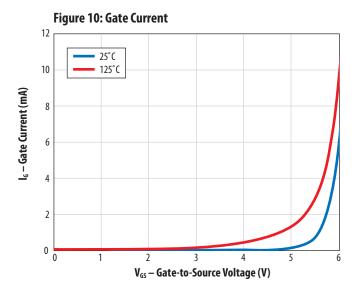
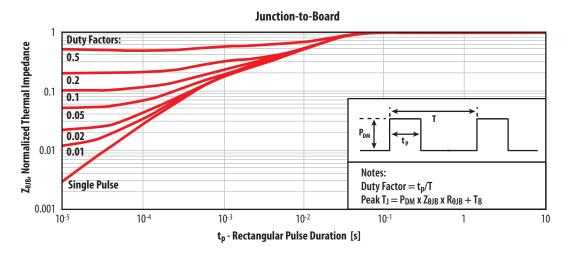
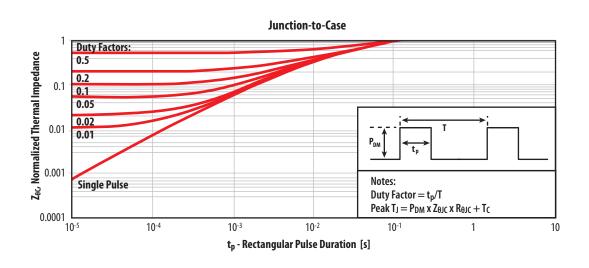
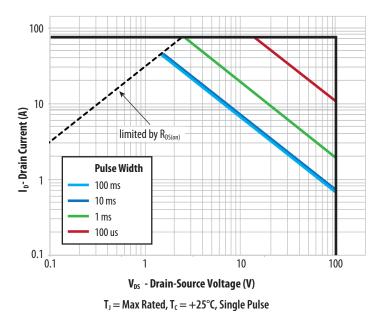




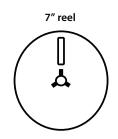
Figure 9: Normalized Threshold Voltage vs. Temperature

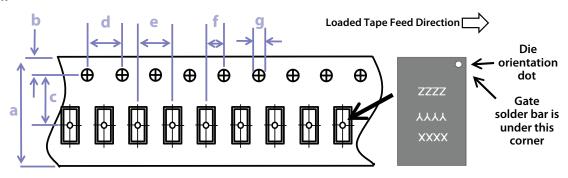



All measurements were done with substrate shortened to source.

eGaN® FET DATASHEET EPC2016C

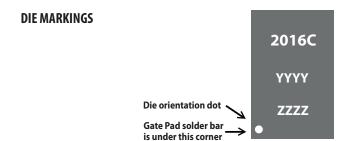

Figure 11: Transient Thermal Response Curves


eGaN® FET DATASHEET EPC2016C


Figure 12: Safe Operating Area

TAPE AND REEL CONFIGURATION

4mm pitch, 8mm wide tape on 7" reel

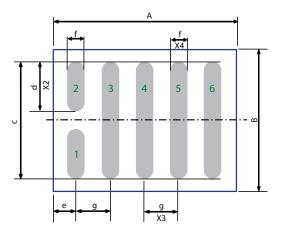


	EPC2016C (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Die is placed into pocket solder bar side down (face side down)

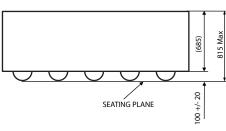
Note 1: MSL1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.



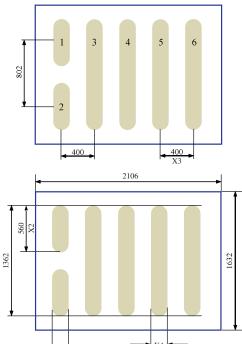
Part Number		Laser Markings	
	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
EPC2016C	2016	YYYY	ZZZZ

eGaN® FET DATASHEET EPC2016C


DIE OUTLINE

Solder Bar View

DIM	MICROMETERS			
	MIN	Nominal	MAX	
Α	2076	2106	2136	
В	1602	1632	1662	
C	1379	1382	1385	
d	577	580	583	
е	235	250	265	
f	195	200	205	
g	400	400	400	


Side View

RECOMMENDED LAND PATTERN

(units in µm)

The land pattern is solder mask defined.

Pad no. 1 is Gate;

Pads no. 3, 5 are Drain;

Pads no. 4, 6 are Source;

Pad no. 2 is Substrate.

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. $eGaN^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation.

U.S. Patents 8,350,294; 8,404,508; 8,431,960; 8,436,398; 8,785,974; 8,890,168; 8,969,918; 8,853,749; 8,823,012

Information subject to change without notice. Revised September, 2015

180