N-Channel Enhancement Mode MOS Transistor ## HCT7000M, HCT70000MTX, HCT7000MTXV #### Features: - 200 mA I_D - Ultra small surface mount package - $R_{DS(ON)} < 5\Omega$ - Pin-out compatible with most SOT23 MOSFETS ### **Description:** The HCT7000M is a high performance enhancement mode N-channel MOS transistor chip packaged in the ultra small 3 pin ceramic LCC package. Electrical characteristics are similar to those of the JEDEC 2N7000. The pin-out and footprint matches that of most enhancement mode MOS transistors built in SOT23 plastic packages. TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500. TX products receive a V_{GS} HTRB at 24 V for 48 hrs. at 150° C and a V_{DS} HTRB at 48 V for 260 hrs.at 150° C. ### **Applications:** - Switching applications: small servo motor control, power MOSFET gate drives - Relay Drivers - High Speed Line Drivers - Power Supplies | Part
Number | Sensor Type | V _{DSS}
Min | V _{GS(TH)} Min/
Max | I _{D(ON)} (mA)
Min | G _{fs} (ms)
Min | t _(ON) / t _(OFF) (ns)
Max | Package | |----------------|--------------------|-------------------------|---------------------------------|--------------------------------|-----------------------------|--|---------------| | HCT7000M | N-Channel | | | | | | | | HCT7000MTX | Enhanced
MOSFET | 60 | 0.8 / 3.0 | 75 | 100 | 10 / 10 | 3-pin Ceramic | | HCT7000MTXV | | | | | | | | Issue A 11/2016 Page 1 # N-Channel Enhancement Mode MOS Transistor ## HCT7000M, HCT70000MTX, HCT7000MTXV | Absolute Maximum Ratings | | | | | |---|-----------------------|--|--|--| | Drain Source Voltage | 60V | | | | | Gate-Source Voltage | ±40 V | | | | | Drain Current | 200 mA | | | | | Power Dissipation (T _A = 25° C) | 300 mW | | | | | Power Dissipation (T _S ⁽¹⁾ = 25° C) | 600 mW ⁽²⁾ | | | | | Operating and Storage Temperature | -55° C to 150° C | | | | | Thermal Resistance R _{ØJC} | 100° C/W | | | | | Thermal Resistance R _{ØJA} | 583° C/W | | | | ### Electrical Characteristics (T_A = 25° C unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNITS | TEST CONDITIONS | | |---------------------|-------------------------------------|-----|-----|-------|---|--| | V _{DSS} | Drain Source Voltage | 60 | | V | V _{GS} = 0 V, I _D = 10 μa | | | V _{GS(TH)} | Gate Threshold Voltage | .8 | 3.0 | V | $V_{DS} = V_{GS}$, $I_D = 1$ mA | | | I _{GSS} | Gate Leakage | | ±10 | nA | V _{DS} = 0 V, V _{GS} = ±15 V | | | I _{DSS} | DSS Zero Gate Voltage Drain Current | | 1 | μΑ | V _{GS} = 0 V, V _{DS} = 48 V | | | I _{D(ON)} | D(ON) On-Site Drain Current | | | mA | V _{DS} = 10 V, V _{GS} = 4.5 V | | | R _{DS(ON)} | Drain Source on-Resistance | | 5 | Ω | V _{GS} = 10 V, I _D = 0.5 A | | | V _{DS(ON)} | Drain Source on-Voltage | | 2.5 | V | V _{GS} = 10 V, I _D = 0.5 A | | | G _{fs} | Forward Transconductance | | | mS | V _{DS} = 10 V, I _D = 0.2 A | | | C _{iss} | Input Capacitance | | 60 | pF | | | | C _{oss} | Output Capacitance | | 25 | pF | V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz | | | C _{rss} | Reverse Transfer Capacitance | | 5 | pF | | | | t _(on) | Turn-on Time | | 10 | ns | 45.4. 05.4.4. 40.4.5. 05.5 | | | t _(off) | Turn-off Time | | 10 | ns | $V_{DD} = 15 \text{ V, } I_{D} = 0.5 \text{ A, } V_{gen} = 10 \text{ V, } R_{g} = 25\Omega$ | | #### Note: ¹⁾ T_S = Substrate temperature that the chip carrier is mounted on. ²⁾ This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measurable as an outgoing test.