N-Channel Enhancement Mode MOS Transistor

HCT7000M, HCT70000MTX, HCT7000MTXV

Features:

- 200 mA I_D
- Ultra small surface mount package
- $R_{DS(ON)} < 5\Omega$
- Pin-out compatible with most SOT23 MOSFETS

Description:

The HCT7000M is a high performance enhancement mode N-channel MOS transistor chip packaged in the ultra small 3 pin ceramic LCC package. Electrical characteristics are similar to those of the JEDEC 2N7000. The pin-out and footprint matches that of most enhancement mode MOS transistors built in SOT23 plastic packages.

TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500. TX products receive a V_{GS} HTRB at 24 V for 48 hrs. at 150° C and a V_{DS} HTRB at 48 V for 260 hrs.at 150° C.

Applications:

- Switching applications: small servo motor control, power MOSFET gate drives
- Relay Drivers
- High Speed Line Drivers
- Power Supplies

Part Number	Sensor Type	V _{DSS} Min	V _{GS(TH)} Min/ Max	I _{D(ON)} (mA) Min	G _{fs} (ms) Min	t _(ON) / t _(OFF) (ns) Max	Package
HCT7000M	N-Channel						
HCT7000MTX	Enhanced MOSFET	60	0.8 / 3.0	75	100	10 / 10	3-pin Ceramic
HCT7000MTXV							

Issue A 11/2016 Page 1

N-Channel Enhancement Mode MOS Transistor

HCT7000M, HCT70000MTX, HCT7000MTXV

Absolute Maximum Ratings				
Drain Source Voltage	60V			
Gate-Source Voltage	±40 V			
Drain Current	200 mA			
Power Dissipation (T _A = 25° C)	300 mW			
Power Dissipation (T _S ⁽¹⁾ = 25° C)	600 mW ⁽²⁾			
Operating and Storage Temperature	-55° C to 150° C			
Thermal Resistance R _{ØJC}	100° C/W			
Thermal Resistance R _{ØJA}	583° C/W			

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
V _{DSS}	Drain Source Voltage	60		V	V _{GS} = 0 V, I _D = 10 μa	
V _{GS(TH)}	Gate Threshold Voltage	.8	3.0	V	$V_{DS} = V_{GS}$, $I_D = 1$ mA	
I _{GSS}	Gate Leakage		±10	nA	V _{DS} = 0 V, V _{GS} = ±15 V	
I _{DSS}	DSS Zero Gate Voltage Drain Current		1	μΑ	V _{GS} = 0 V, V _{DS} = 48 V	
I _{D(ON)}	D(ON) On-Site Drain Current			mA	V _{DS} = 10 V, V _{GS} = 4.5 V	
R _{DS(ON)}	Drain Source on-Resistance		5	Ω	V _{GS} = 10 V, I _D = 0.5 A	
V _{DS(ON)}	Drain Source on-Voltage		2.5	V	V _{GS} = 10 V, I _D = 0.5 A	
G _{fs}	Forward Transconductance			mS	V _{DS} = 10 V, I _D = 0.2 A	
C _{iss}	Input Capacitance		60	pF		
C _{oss}	Output Capacitance		25	pF	V _{DS} = 25 V, V _{GS} = 0 V, f = 1MHz	
C _{rss}	Reverse Transfer Capacitance		5	pF		
t _(on)	Turn-on Time		10	ns	45.4. 05.4.4. 40.4.5. 05.5	
t _(off)	Turn-off Time		10	ns	$V_{DD} = 15 \text{ V, } I_{D} = 0.5 \text{ A, } V_{gen} = 10 \text{ V, } R_{g} = 25\Omega$	

Note:

¹⁾ T_S = Substrate temperature that the chip carrier is mounted on.

²⁾ This rating is provided as an aid to designers. It is dependent upon mounting material and methods and is not measurable as an outgoing test.